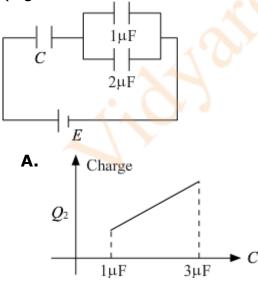
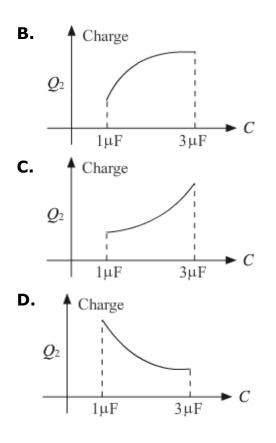


Electrostatic Potential and Capacitance

Q.No.1:


Two capacitors C_1 and C_2 are charged to 120 V and 200 V respectively. It is found that by connecting them together, the potential on each one can be made zero. Then:


JEE 2013

- **A.** $5C_1 = 3C_2$ **B.** $3C_1 = 5C_2$ **C.** $3C_1 + 5C_2 = 0$
- **D.** $9C_1 = 4C_2$

Q.No.2: In the given circuit, charge Q_2 on the 2 μ F capacitor changes as *C* is varied from 1 μ F to 3 μ F. Q_2 as a function of *C* is represented by (Figures are drawn schematically and are not to scale.)

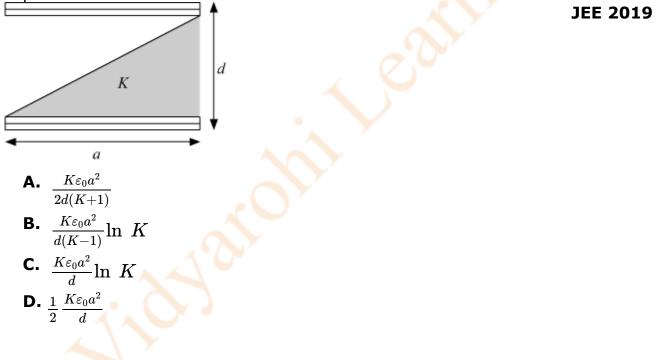
JEE 2015

Q.No.3: A capacitance of 2 μ F is required in an electrical circuit across a potential difference of 1.0 kV. A large number of 1 μ F capacitors are available which can withstand a potential difference of not more than 300 V. The minimum number of capacitors required to achieve this is: **JEE 2017**

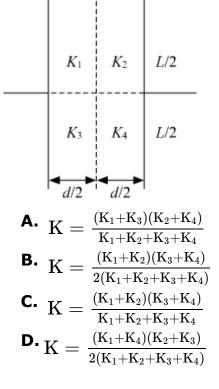
- **A.** 32
- **B.** 2
- **C.** 16
- **D.** 24

Q.No.4: A parallel plate capacitor of capacitance 90 pF is connected to a battery of emf 20 V. If a dielectric material of dielectric constant $K = \frac{5}{3}$ is inserted between the plates, the magnitude of the induced charge will be :

JEE 2018

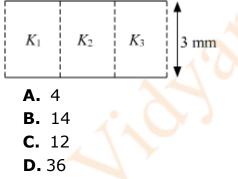

A. 2.4 nC **B.** 0.9 nC **C.** 1.2 nC **D.** 0.3 nC

Q.No.5: Three concentric metal shells A, B and C of respective radii a, b and c


(a < b < c) have surface charge densities + σ , - σ and + σ respectively. The potential of shell B is: **JEE 2018**

A. $\frac{\sigma}{\in_0}\left[\frac{\mathrm{b}^2-\mathrm{c}^2}{\mathrm{b}}+\mathrm{a} ight]$	
B. $\frac{\sigma}{\in_0} \left[\frac{\mathrm{b}^2 - \mathrm{c}^2}{\mathrm{c}} + \mathrm{a} \right]$	
C. $\frac{\sigma}{\in_0} \left[\frac{\mathrm{a}^2 - \mathrm{b}^2}{\mathrm{a}} + \mathrm{c} \right]$	
D. $\frac{\sigma}{\in_0}\left[rac{\mathrm{a}^2-\mathrm{b}^2}{\mathrm{b}}+\mathrm{c} ight]$	

Q.No.6: A parallel plate capacitor is made of two square plates of side 'a', separated by a distance d ($d \ll a$). The lower triangular portion is filled with a dielectric of dielectric constant K, as shown in the figure. Capacitance of this capacitor is:



Q.No.7: A parallel plate capacitor with square plates is filled with four dielectrics of dielectric constants K_1 , K_2 , K_3 , K_4 arranged as shown in the figure. The effective dielectric constant K will be:

Q.No.8: A parallel plate capacitor is of area 6 cm² and a separation 3 mm. The gap is filled with three dielectric materials of equal thickness (see figure) with dielectric constants $K_1 = 10$, $K_2 = 12$ and $K_3 = 14$. The dielectric constant of a material which when fully inserted in above capacitor, gives same capacitance would be:

JEE 2019

Q.No.9: Four equal point charges Q each are placed in the xy plane at (0, 2), (4, 2), (4, -2) and (0, -2). The work required to put a fifth charge Q at the origin of the coordinate system will be: **JEE 2019**

A.
$$\frac{\mathrm{Q}^2}{4\pi\varepsilon_\circ}\left(1+\frac{1}{\sqrt{3}}\right)$$

B. $\frac{\mathrm{Q}^2}{4\pi\varepsilon_\circ}\left(1+\frac{1}{\sqrt{5}}\right)$
C. $\frac{\mathrm{Q}^2}{2\sqrt{2}\pi\varepsilon_\circ}$

Q.No.10: A parallel plate capacitor having capacitance 12 pF is charged by a battery to a potential difference of 10 V between its plates. The charging battery is now disconnected and a porcelain slab of dielectric constant 6.5 is slipped between the plates. The work done by the capacitor on the slab is: **JEE 2019**

- **A.** 692 pJ
- **B.** 508 pJ
- **C.** 560 pJ
- **D.** 600 pJ